At CERN, we probe the fundamental structure of particles that make up everything around us. We do so using the world's largest and most complex scientific instruments.
Know more
Who we are
Our Mission
Our Governance
Our Member States
Our History
Our People
What we do
Fundamental research
Contribute to society
Environmentally responsible research
Bring nations together
Inspire and educate
Fast facts and FAQs
Key Achievements
Key achievements submenu
The Higgs Boson
The W boson
The Z boson
The Large Hadron Collider
The Birth of the web
Antimatter
News
Accelerators
At CERN
Computing
Engineering
Experiments
Knowledge sharing
Physics
Events
CERN Community
News and announcements
Official communications
Scientists
Press Room
Press Room submenu
Media News
Resources
Contact
The research programme at CERN covers topics from kaons to cosmic rays, and from the Standard Model to supersymmetry
Dark matter
The early universe
The Higgs boson
The Standard Model
+ More
CERN's accelerators
The Antiproton Decelerator
High-Luminosity LHC
Accelerating: radiofrequency cavities
Steering and focusing: magnets and superconductivity
Circulating: ultra-high vacuum
Cooling: cryogenic systems
Powering: energy at CERN
The CERN Data Centre
The Worldwide LHC Computing Grid
CERN openlab
Open source for open science
The birth of the web
ALICE
ATLAS
CMS
LHCb
By Topic
By format
360 image
Annual report
Brochure
Bulletin
Courier
Image
Video
By audience
CERN community
Educators
General public
Industry
Media
Students
The FASER experiment will look for light and extremely weakly interacting particles
The FASER and FORMOSA collaborations team up to test a demonstrator experiment to detect particles with a tiny electrical charge
The interaction strength of neutrinos had never previously been measured in this energy range
The first observation of collider neutrinos at the LHC paves the way for exploring new physics scenarios
The result paves the way for studies of high-energy neutrinos at current and future particle colliders
FASER, the Forward Search Experiment, has been installed in the LHC tunnel during Long Shutdown 2. It is currently being tested and will start taking data next year
The first-of-its-kind detector could initiate a new era in neutrino physics at particle colliders
The experiment, which will complement existing searches for dark matter at the LHC, will be operational in 2021